Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958191

RESUMEN

A study was conducted to determine the age dependence of the temperature of the low back in the region of the five lumbar vertebrae by using passive microwave radiometry (MWR). The rationale for the study is that the infrared brightness on which the temperature measurement is based will be dependent upon blood circulation and thus on metabolic, vascular, and other regulatory factors. The brightness and infrared temperatures were determined in five zones above each of the medial, left, and right lateral projections of the vertebrae. A total of 115 healthy subjects were recruited, aged between 18 and 84 years. No significant differences in infrared temperature were detected. As predicted, brightness temperature increased until 25 years old and then gradually decreased. In subjects over 70 years of age, compared with those aged 60-70 years, there is a significant increase in brightness temperature at the level of 3-5 lumbar vertebrae by 0.3-0.7 °C. This is interpreted as indicating that individuals who have lived to an advanced age successfully maintain metabolic and regenerative processes. The benchmark data that has been obtained can be usefully employed in future studies of the aetiology of low back pain. In particular, the prospect exists for the technology to be used to provide a non-invasive biomarker to evaluate the effectiveness of antiaging therapies.

2.
Diagnostics (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37568948

RESUMEN

BACKGROUND: Chest CT is widely regarded as a dependable imaging technique for detecting pneumonia in COVID-19 patients, but there is growing interest in microwave radiometry (MWR) of the lungs as a possible substitute for diagnosing lung involvement. AIM: The aim of this study is to examine the utility of the MWR approach as a screening tool for diagnosing pneumonia with complications in patients with COVID-19. METHODS: Our study involved two groups of participants. The control group consisted of 50 individuals (24 male and 26 female) between the ages of 20 and 70 years who underwent clinical evaluations and had no known medical conditions. The main group included 142 participants (67 men and 75 women) between the ages of 20 and 87 years who were diagnosed with COVID-19 complicated by pneumonia and were admitted to the emergency department between June 2020 to June 2021. Skin and lung temperatures were measured at 14 points, including 2 additional reference points, using a previously established method. Lung temperature data were obtained with the MWR2020 (MMWR LTD, Edinburgh, UK). All participants underwent clinical evaluations, laboratory tests, chest CT scans, MWR of the lungs, and reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2. RESULTS: The MWR exhibits a high predictive capacity as demonstrated by its sensitivity of 97.6% and specificity of 92.7%. CONCLUSIONS: MWR of the lungs can be a valuable substitute for chest CT in diagnosing pneumonia in patients with COVID-19, especially in situations where chest CT is unavailable or impractical.

3.
Diagnostics (Basel) ; 13(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36980467

RESUMEN

The temperature of the brain can reflect the activity of its different regions, allowing us to evaluate the connections between them. A study involving 111 patients in a vegetative state or minimally conscious state used microwave radiometry to measure their cortical temperature. The patients were divided into a main group receiving a 10-day selective craniocerebral hypothermia (SCCH) procedure, and a control group receiving basic therapy and rehabilitation. The main group showed a significant improvement in consciousness level as measured by CRS-R assessment on day 14 compared to the control group. Temperature heterogeneity increased in patients who received SCCH, while remaining stable in the control group. The use of microwave radiometry to assess rehabilitation effectiveness and the inclusion of SCCH in rehabilitation programs appears to be a promising approach.

4.
Diagnostics (Basel) ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359464

RESUMEN

Early diagnosis of ovarian cancer remains an urgent issue owing to the continuing trend towards increasing incidence along with only marginal improvements in mortality and 5-year survival rates. Furthermore, there is a lack of a clear formulation of the concept of pathogenesis. The diagnostic values of tumor markers, their potential advantages and disadvantages, and their combination with radiation imaging methods and transvaginal sonography are discussed. More advanced imaging techniques, such as computed tomography and magnetic resonance imaging have proven too expensive for widespread use. According to the World Health Organization, more than half of the world's population does not have access to diagnostic imaging. Consequently, there is high demand for a low-cost, reliable, and safe imaging system for detecting and monitoring cancer. Currently, there is no clear algorithm available for examining and accurately diagnosing patients with postmenopausal ovarian tumors; moreover, reliable criteria allowing dynamic observation and for determining surgical access and optimal surgical intervention measures in postmenopausal patients are lacking. Medical microwave radiometry shows promising results yielding an accuracy of 90%.

5.
Diagnostics (Basel) ; 12(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36140439

RESUMEN

BACKGROUND AND OBJECTIVE: Medical microwave radiometry (MWR) is used to capture the thermal properties of internal tissues and has usages in breast cancer detection. Our goal in this paper is to improve classification performance and investigate automated neural architecture search methods. METHODS: We investigated extending the weight agnostic neural network by optimizing the weights using the bi-population covariance matrix adaptation evolution strategy (BIPOP-CMA-ES) once the topology was found. We evaluated and compared the model based on the F1 score, accuracy, precision, recall, and the number of connections. RESULTS: The experiments were conducted on a dataset of 4912 patients, classified as low or high risk for breast cancer. The weight agnostic BIPOP-CMA-ES model achieved the best average performance. It obtained an F1-score of 0.933, accuracy of 0.932, precision of 0.929, recall of 0.942, and 163 connections. CONCLUSIONS: The results of the model are an indication of the promising potential of MWR utilizing a neural network-based diagnostic tool for cancer detection. By separating the tasks of topology search and weight training, we can improve the overall performance.

6.
Diagnostics (Basel) ; 12(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892486

RESUMEN

The study of circadian rhythms in the human body using temperature measurements is the most informative way to assess the viability of the body's rhythm-organizing systems. Pathological processes can affect circadian rhythm dynamics in damaged organs. Severe brain damage that caused the development of disorders of consciousness (DOC) (strokes, traumatic brain injury) disrupts the activity of central oscillators, by directly damaging or destroying the periphery links, and the level of preservation of circadian rhythms and the dynamics of their recovery can be informative diagnostic criteria for patient's condition assessment. This study examined 23 patients with DOC by using a non-invasive method for obtaining body and cerebral cortex temperature to compare with healthy controls. Measurements were made with a 4 h interval for 52 h beginning at 08:00 on day 1 and ending at 08:00 on day 3. The profile of patients with DOC showed complete disruption compared to healthy controls with rhythmic patterns. The results indicate that the mechanisms for maintaining brain circadian rhythms are different from general homeostasis regulation of the body. Use of microwave radio thermometry for the identification of rehabilitation potential in patients with DOC is a promising area of investigation.

7.
Diagnostics (Basel) ; 12(6)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35741308

RESUMEN

Passive microwave radiometry (MWR) is a measurement technique based on the detection of passive radiation in the microwave spectrum of different objects. When in equilibrium, this radiation is known to be proportional to the thermodynamic temperature of an emitting body. We hypothesize that living systems feature other mechanisms of emission that are based on protein unfolding and water rotational transitions. To understand the nature of these emissions, microwave radiometry was used in several in vitro experiments. In our study, we performed pilot measurements of microwave emissions from egg whites during denaturation induced by ethanol. Egg whites comprise 10% proteins, such as albumins, mucoproteins, and globulins. We observed a novel phenomenon: microwave emissions changed without a corresponding change in the water's thermodynamic temperature. We also found striking differences between microwave emissions and thermodynamic temperature kinetics. Therefore, we hypothesize that these two processes are unrelated, contrary to what was thought before. It is known that some pathologies such as stroke or brain trauma feature increased microwave emissions. We hypothesize that this phenomenon originates from protein denaturation and is not related to the thermodynamic temperature. As such, our findings could explain the reason for the increase in microwave emissions after trauma and post mortem for the first time. These findings could be used for the development of novel diagnostics methods. The MWR method is inexpensive and does not require fluorescent or radioactive labels. It can be used in different areas of basic and applied pharmaceutical research, including in kinetics studies in biomedicine.

8.
Diagnostics (Basel) ; 12(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35453991

RESUMEN

The radiothermometry (RTM) study of a cytochrome-containing system (CYP102 A1) has been conducted in order to demonstrate the applicability of RTM for monitoring changes in the functional activity of an enzyme in case of its point mutation. The study has been performed with the example of the wild-type cytochrome (WT) and its mutant type A264K. CYP102 A1 is a nanoscale protein-enzymatic system of about 10 nm in size. RTM uses a radio detector and can record the corresponding brightness temperature (Tbr) of the nanoscale enzyme solution within the 3.4-4.2 GHz frequency range during enzyme functioning. It was found that the enzymatic reaction during the lauric acid hydroxylation at the wild-type CYP102 A1 (WT) concentration of ~10-9 M is accompanied by Tbr fluctuations of ~0.5-1 °C. At the same time, no Tbr fluctuations are observed for the mutated forms of the enzyme CYP102 A1 (A264K), where one amino acid was replaced. We know that the activity of CYP102 A1 (WT) is ~4 orders of magnitude higher than that of CYP102 A1 (A264K). We therefore concluded that the disappearance of the fluctuation of Tbr CYP102 A1 (A264K) is associated with a decrease in the activity of the enzyme. This effect can be used to develop new methods for testing the activity of the enzyme that do not require additional labels and expensive equipment, in comparison with calorimetry and spectral methods. The RTM is beginning to find application in the diagnosis of oncological diseases and for the analysis of biochemical processes.

9.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611410

RESUMEN

Breast cancer prevention is an important health issue for women worldwide. In this study, we compared the conventional breast cancer screening exams of mammography and ultrasound with the novel approaches of passive microwave radiometry (MWR) and microRNA (miRNA) analysis. While mammography screening dynamics could be completed in 3-6 months, MWR provided a prediction in a matter of weeks or even days. Moreover, MWR has the potential of being complemented with miRNA diagnostics to further improve its predictive quality. These novel techniques can be used alone or in conjunction with more established techniques to improve early breast cancer diagnosis.

10.
Drug Discov Today ; 27(3): 881-889, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767961

RESUMEN

Brain temperature (BT) is a crucial physiological parameter used to monitor cerebral status. Physical activities and traumatic brain injuries (TBI) can affect BT; therefore, non-invasive BT monitoring is an important way to gain insight into TBI, stroke, and wellbeing. The effects of BT on physical performance have been studied at length. When humans are under extreme conditions, most of the energy consumed is used to maintain the BT. In addition, measuring the BT is useful for early brain diagnostics. Passive microwave radiometry (MWR) measures the intrinsic radiation of tissues in the 1-4 GHz range. It was shown that non-invasive passive MWR technology can successfully measure BT and identify even small TBIs. Here, we review the potential applications of MWR for assessing BT.


Asunto(s)
Microondas , Radiometría , Temperatura Corporal/fisiología , Encéfalo , Humanos , Temperatura
11.
Diagnostics (Basel) ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562419

RESUMEN

The global spread of severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), could be due to limited access to diagnostic tests and equipment. Currently, most diagnoses use the reverse transcription polymerase chain reaction (RT-PCR) and chest computed tomography (CT). However, challenges exist with CT use due to infection control, lack of CT availability in low- and middle-income countries, and low RT-PCR sensitivity. Passive microwave radiometry (MWR), a cheap, non-radioactive, and portable technology, has been used for cancer and other diseases' diagnoses. Here, we tested MWR use first time for the early diagnosis of pulmonary COVID-19 complications in a cross-sectional controlled trial in order to evaluate MWR use in hospitalized patients with COVID-19 pneumonia and healthy individuals. We measured the skin and internal temperature using 30 points identified on the body, for both lungs. Pneumonia and lung damage were diagnosed by both CT scan and doctors' diagnoses (pneumonia+/pneumonia-). COVID-19 was determined by RT-PCR (covid+/covid-). The best MWR results were obtained for the pneumonia-/covid- and pneumonia+/covid+ groups. The study suggests that MWR could be used for diagnosing pneumonia in COVID-19 patients. Since MWR is inexpensive, its use will ease the financial burden for both patients and countries. Clinical Trial Number: NCT04568525.

12.
Drug Discov Today ; 25(4): 757-763, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004473

RESUMEN

Passive microwave radiometry (MWR) measures natural emissions in the range 1-10GHz from proteins, cells, organs and the whole human body. The intensity of intrinsic emission is determined by biochemical and biophysical processes. The nature of this process is still not very well known. Infrared thermography (IRT) can detect emission several microns deep (skin temperature), whereas MWR allows detection of thermal abnormalities down to several centimeters (internal or deep temperature). MWR is noninvasive and inexpensive. It requires neither fluorescent nor radioactive labels, nor ionizing or other radiation. MWR can be used in early drug discovery as well as preclinical and clinical studies.


Asunto(s)
Descubrimiento de Drogas/métodos , Microondas , Radiometría/métodos , Animales , Temperatura Corporal/fisiología , Ensayos Clínicos como Asunto/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Termografía/métodos
13.
Front Physiol ; 9: 956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090068

RESUMEN

This study monitored thermal denaturation of albumin using microwave radiometry. Brightness Temperature, derived from Microwave Emission (BTME) of an aqueous solution of bovine serum albumin (0.1 mM) was monitored in the microwave frequency range 3.8-4.2 GHz during denaturation of this protein at a temperature of 56°C in a conical polypropylene cuvette. This method does not require fluorescent or radioactive labels. A microwave emission change of 1.5-2°C in the BTME of aqueous albumin solution was found during its denaturation, without a corresponding change in the water temperature. Radio thermometry makes it possible to monitor protein denaturation kinetics, and the resulting rate constant for albumin denaturation was 0.2 ± 0.1 min-1, which corresponds well to rate constants obtained by other methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...